
Ed-Fi 2.x Course Transcript Entity Mapping

Overview
Use this page to help understand and define the mapping of Aeries data to Ed-Fi data

Status
Ready for certification

Document Version 1.5

Last Updated 25 Feb 2020

Links
Entity
https://mappingedu.ed-fi.org/#/entity/c210049f-4ed2-e811-80d9-005056b36109/info?dataStandardId=db3697f4-4dd2-e811-80d9-005056b36109

Scenarios
https://techdocs.ed-fi.org/display/EDFICERT/Student+Transcript+%3E+CourseTranscript+Scenarios

Schema
https://schema.ed-fi.org/datahandbook-v22/Ed-Fi-UDM-Handbook-Index.html#/CourseTranscript552

Root
HIS

Join
HIS, TDF, GRC

SQL

Scheduled SQ

https://mappingedu.ed-fi.org/#/entity/c210049f-4ed2-e811-80d9-005056b36109/info?dataStandardId=db3697f4-4dd2-e811-80d9-005056b36109
https://techdocs.ed-fi.org/display/EDFICERT/Student+Transcript+%3E+CourseTranscript+Scenarios
https://schema.ed-fi.org/datahandbook-v22/Ed-Fi-UDM-Handbook-Index.html#/CourseTranscript552

HIS_Functions.GetEdFiDataTable_CourseTranscripts

SELECT [HIS].[PID], [HIS].[YR], [HIS].[TE], [T].TermStateCode, [S].[CA], [S].[CR], [S].[SC], Sum([HIS].[CR])
SessionAttemptedCredits, Sum([HIS].[CC]) SessionEarnedCredits, [HIS].[CN], [HIS].[CC], [HIS].[ST], [HIS].
[MK], [GRC].[CC] AS CourseAttemptResult
FROM [HIS] INNER JOIN
(
 SELECT ROW_NUMBER() OVER (PARTITION BY ID ORDER BY CASE WHEN NOT [TG] > ' ' THEN ' ' ELSE 'X' END, CASE
WHEN NOT [SP] > ' ' THEN ' ' ELSE 'X' END, [ED]) StuCount, [ID], [SC], [SN], [CA], [CR]
 FROM [STU] WHERE [DEL] = 0 AND [STU].[TG] = '' AND [STU].[ID] IN (SELECT [ENR].[ID] FROM [ENR] WHERE
[ENR].[YR] = @YR)
)
[S] ON [HIS].[PID] = [S].[ID]
LEFT JOIN
(
 SELECT [TE], TermStateCode FROM
 (
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 0 [TE], [ST0] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST0] > ' ' GROUP
BY [ST0]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 1 [TE], [ST1] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST1] > ' ' GROUP
BY [ST1]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 2 [TE], [ST2] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST2] > ' ' GROUP
BY [ST2]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 3 [TE], [ST3] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST3] > ' ' GROUP
BY [ST3]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 4 [TE], [ST4] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST4] > ' ' GROUP
BY [ST4]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 5 [TE], [ST5] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST5] > ' ' GROUP
BY [ST5]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 6 [TE], [ST6] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST6] > ' ' GROUP
BY [ST6]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 7 [TE], [ST7] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST7] > ' ' GROUP
BY [ST7]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 8 [TE], [ST8] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST8] > ' ' GROUP
BY [ST8]
) [T]
 WHERE RowNum = 1
) [T] ON [HIS].[TE] = [T].[TE]
LEFT JOIN [GRC] ON [HIS].[ST] = [GRC].[SC] AND [HIS].[MK] = [GRC].[MK]
WHERE [HIS].[DEL] = 0 AND [S].StuCount = 1 AND [S].[SC] = @SC AND [HIS].[ST] IN (993,994)
GROUP BY [HIS].[PID], [HIS].[YR], [HIS].[TE], [S].[CA], [S].[CR], [S].[SC], [T].TermStateCode, [HIS].[CN],
[HIS].[CC], [HIS].[ST], [HIS].[MK], [GRC].[CC]

Real-Time

HIS_Functions.GetEdFiDataTable_CourseTranscripts

SELECT [HIS].[PID], [HIS].[YR], [HIS].[TE], [T].TermStateCode, [S].[CA], [S].[CR], [S].[SC], Sum([HIS].[CR])
SessionAttemptedCredits, Sum([HIS].[CC]) SessionEarnedCredits, [HIS].[CN], [HIS].[CC], [HIS].[ST], [HIS].
[MK], [GRC].[CC] AS CourseAttemptResult
FROM [HIS] INNER JOIN
(
 SELECT ROW_NUMBER() OVER (PARTITION BY ID ORDER BY CASE WHEN NOT [TG] > ' ' THEN ' ' ELSE 'X' END, CASE
WHEN NOT [SP] > ' ' THEN ' ' ELSE 'X' END, [ED]) StuCount, [ID], [SC], [SN], [CA], [CR]
 FROM [STU] WHERE [DEL] = 0 AND [STU].[TG] = '' AND [STU].[ID] IN (SELECT [ENR].[ID] FROM [ENR] WHERE
[ENR].[YR] = @YR)
)
[S] ON [HIS].[PID] = [S].[ID]
LEFT JOIN
(
 SELECT [TE], TermStateCode FROM
 (
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 0 [TE], [ST0] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST0] > ' ' GROUP
BY [ST0]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 1 [TE], [ST1] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST1] > ' ' GROUP
BY [ST1]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 2 [TE], [ST2] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST2] > ' ' GROUP
BY [ST2]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 3 [TE], [ST3] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST3] > ' ' GROUP
BY [ST3]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 4 [TE], [ST4] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST4] > ' ' GROUP
BY [ST4]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 5 [TE], [ST5] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST5] > ' ' GROUP
BY [ST5]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 6 [TE], [ST6] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST6] > ' ' GROUP
BY [ST6]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 7 [TE], [ST7] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST7] > ' ' GROUP
BY [ST7]
 UNION ALL
 SELECT ROW_NUMBER() OVER (ORDER BY Count(*) DESC) RowNum, 8 [TE], [ST8] TermStateCode, Count
(*) RcdCount FROM [TDF] WHERE [DEL] = 0 AND ([CD] = ' ' OR [CD] = '') AND [SC] = @SC AND [ST8] > ' ' GROUP
BY [ST8]
) [T]
 WHERE RowNum = 1
) [T] ON [HIS].[TE] = [T].[TE]
LEFT JOIN [GRC] ON [HIS].[ST] = [GRC].[SC] AND [HIS].[MK] = [GRC].[MK]
WHERE [HIS].[DEL] = 0 AND [S].StuCount = 1 AND [S].[SC] = @SC AND [HIS].[ST] IN (993,994)
 AND [HIS].[DTS] >= @TimeSince
GROUP BY [HIS].[PID], [HIS].[YR], [HIS].[TE], [S].[CA], [S].[CR], [S].[SC], [T].TermStateCode, [HIS].[CN],
[HIS].[CC], [HIS].[ST], [HIS].[MK], [GRC].[CC]

Mapping

Parent Properties Type Required Table Field Other Code / Notes

\ alternativeCourseCode String Optional

\ alternativeCourseTitle String Optional

\ attemptedCredit
Conversion

Double Optional

\ attemptedCredits Double Required HIS HIS.CR GetNullableDouble(s("CR"))

\ attemptedCreditType String Optional

\ courseAttempt
ResultType

String Identity GRC GRC.CC attemptPass = GetNullableBoolean(
rowHIS!CourseAttemptResult)

If(attemptPass = True, "Pass", "Fail")

\ courseReference CourseReference (YES)

courseReference code String Identity HIS HIS.CN GetString(s("CN"))

courseReference educationOrganizationId Integer Identity District ID OdsConfiguration.
DistrictId

courseReference whenTakenGradeLevel
Descriptor

String Optional

\ courseRepeatCodeType String Optional

\ courseTitle String Optional

\ earnedAdditionalCredits List(Of CourseTranscript
EarnedAdditionalCredits)

Optional

earnedAdditional
Credits[n]

additionalCreditType String Optional

earnedAdditional
Credits[n]

credits Double Optional

\ earnedCreditConversion Double Optional

\ earnedCredits Double Required HIS HIS.CC GetNullableDouble(s("CC"))

\ earnedCreditType String Optional

\ finalLetterGradeEarned String Required HIS HIS.MK if IsNumeric(rowHIS!MK) = false
 GetString(rowHIS!MK)

\ finalNumericGrade
Earned

Double Required HIS HIS.MK if IsNumeric(rowHIS!MK) = true
 GetNullableDouble(rowHIS!MK)

\ methodCredit
EarnedType

String Optional

\ schoolReference SchoolReference Required

schoolReference link Link Optional

schoolReference schoolId Integer Required HIS HIS.ST GetNullableInteger(s("ST"))

\ studentAcademicRecord
Reference

StudentAcademic
RecordReference

Identity

studentAcademic
RecordReference

educationOrganizationId Integer Identity District ID OdsConfiguration.
DistrictId

studentAcademic
RecordReference

link Link Optional

studentAcademic
RecordReference

schoolYear Integer Identity HIS HIS.YR GetSchoolYearFromInt(s("YR"))

see function below

studentAcademic
RecordReference

studentUniqueId String Identity HIS HIS.PID GetString(s("PID"))

studentAcademic
RecordReference

termDescriptor String Identity HIS HIS.TE GetEdFiCodeValue(
TermDescriptor,
"TDF", "ST0",
rowHIS!TermStateCode)

\ whenTakenGradeLevel
Descriptor

String Optional

Code

Public Shared Function GetSchoolYearFromInt(ByVal obj As Object) As Integer?

 Dim schoolYear As Integer? = Nothing
 Dim year As Integer = 0

 If obj IsNot Nothing AndAlso Integer.TryParse(obj, year) Then
 If year < 1000 Then
 ' 2 or 3 digit year i.e. 18 will return 2018 or 118 will return 2118
 schoolYear = 2000 + year
 ElseIf year < 9999 Then
 ' 4 digit year i.e. 2018 so return 2018 (or maybe 2118)
 schoolYear = year
 Else
 ' the data is corrupt so just return Nothing.
 End If
 End If

 Return schoolYear

End Function

	Ed-Fi 2.x Course Transcript Entity Mapping

